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The solid-state battery is a strong candidate for next-generation

echargeable battery technology. Solid-state batteries, in which the liq-

id is replaced with solid electrolytes, may afford enhanced safety, high

nergy density, high power density, and a wide operational temperature

ange. Solid-state battery technology is therefore attracting great atten-

ion in both scientific and industrial communities. Despite this rapidly

looming interest in solid-state batteries, many challenges remain for

he fundamental understanding, materials processing, cell manufactur-

ng, and diagnosis of this emerging battery technology. Few solid elec-

rolytes exhibit both high Li-ion conductivity and other attributes de-

irable for large-scale manufacturing and processing. The sluggish ionic

ransport and mechanical instability at interfaces between solid elec-

rolytes and electrodes have yet to be addressed. Solid-state batteries

ith Li metal anodes, which are required to increase the cell energy

ensity to competitive values, are plagued by lithium metal penetration

hrough the solid electrolyte. Fundamental understanding is strongly re-

uested to overcome these challenges, requiring advancements in mate-

ials development, interfacial engineering, battery manufacturing, and

ovel techniques in modeling and characterization. 

Therefore, we have organized this special issue of ‘Solid-State Bat-

ery’ to highlight research at the forefront of this exciting field, invit-

ng contributions (research, perspective or review articles) addressing

ovel materials, electrochemistry, solid interfaces, lithium metal an-

des, and interfacial engineering. This special issue contains 39 con-

ributions, including 30 research articles, 4 reviews, and 5 short com-

unications, contributed from the world-leading experts working in the

eld of solid-state battery. To resolve the most urgent and critical prob-

ems of solid interfaces in solid-state batteries, the researchers made sig-

ificant advancements using novel approaches of interface engineering

o improve the interfaces for low resistance, high cycling stability, and

etter battery performances [1–14] . To mitigate current short comings

n existing solid electrolyte materials, a wide range of emerging solid

lectrolytes materials, including ceramics [15–18] , novel chemistries

16,19,20] , polymers [21–27] , and hybrid composites [28–31] , are pro-

osed and demonstrated, which open vast new opportunities for this ex-

iting field. Furthermore, new materials components, such as new elec-

rodes, processing, binders, or architectures [32–38] also enabled solid-

tate batteries with improved performance as new engineering avenues.

oreover, detailed mechanistic understanding and guideline principles

re achieved by new theory, computer modeling, and characterizations

13,16,17,39] . 

Overall, we have witnessed remarkable progress and achievements

n the research field of solid-state batteries over the past years and

n this special issue. As guest editors, we hope that this special

ssue can help and inspire readers for new ideas and for subse-
ttps://doi.org/10.1016/j.ensm.2021.03.013 
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uent research and development to further improve solid-state battery

echnology. 

We sincerely thank all authors, reviewers, and editors for giving their

aluable time and expertise to this special issue. 
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